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Inviscid linear perturbations to a columnar trailing line vortex are found in the form 
of centre-modes. These near-neutral modes, occurring at moderate values of the 
azimuthal wavenumber n, are the analogue of the ring modes for large n discussed 
by Stewartson & Capell (1985). The appearance and disappearance of these modes 
as the swirl parameter varies may partly explain the difficulties encountered by 
numerical analysts in the computation of such modes. In  addition, instabilities are 
found at higher values of the swirl parameter than have previously been reported. 

1. Introduction 
The problem of the linear instability of an unbounded columnar vortex has recently 

attracted much interest, in the expectation that it will be relevant to the important 
and dramatic phenomenon of vortex breakdown. A specific such swirling flow often 
studied numerically is that of which the undisturbed flow has non-dimensional 
azimuthal and axial velocities V and W that are functions only of the distance 
r from the axis of the vortex and given by 

(1.1) 
v=-(l-e-r*), q w = ~ - - T * ,  

T 

where q is a constant and the inverse of a Rossby number. Numerical solutions for 
inviscid disturbances to this flow have been computed for various values of q by 
Lessen, Singh & Paillet (1974), by Duck & Foster (1980) and more recently by 
Leibovich & Stewartson (1983). If 8 and z are the azimuthal and axial coordinates 
respectively, and if a weak time-dependent perturbation to each component of 
velocity and the pressure is assumed to be of the form 

Q(r)  exp [i(/3nz-nB-wt)], (1.2) 

where n and /3 are given constants, of which (without loss of generality) n is a positive 
integer, and w is a complex constant to be found, the results of Lessen et al. indicate 
that the most unstable modes have /3q > 0 and that the growth rate increases with 
n. Subsequent studies have confirmed this, and Leibovich & Stewartson present, in 
addition to computations at finite values of n, an asymptotic analysis for the unstable 
modes when n % 1 and a sufficient condition for instability for general V, W. For the 
flow given by (1.1) this condition reduces to q2 < 2, though, as noted by previous 
authors and confirmed here, this is not necessary for instability at finite values 
of n. 

Because of the practical importance of the determination of the value of q above 
which the vortex is stable, the neutral modes are of considerable interest, and it is 
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noteworthy that the computation of these has been found extremely difficult. The 
asymptotic analysis of Leibovich & Stewartson (1983) was valid for 

b < P < q-l ,  (1.3) 

and the authors conjectured that /3 = q-' and P = k were, in the limit n+ 00, 

respectively the positions of the upper and lower neutral points, with the flow being 
stable for q2 > 2 and n sufficiently large. Their analysis did not hold in the immediate 
neighbourhoods of these neutral points, but has subsequently been refined to do so 
in papers by Stewartson & Capell (1985) and Stewartson & Leibovich (1985). In the 
former the authors consider the neighbourhood of the upper neutral point given by 
n2( 1 -Pq) = O(1) and find weakly unstable ring-modes with P = q-l as neutral point. 
As n2( 1 -Pq) + CQ there is a match between these ring-modes and those of Leibovich 
& Stewartson (1983). If 1 -Pq < 0 there are not expected to be any unstable modes 
for any n. As q 2 + 2 - ,  the value of r on which the ring-mode is centred tends to zero. 
In  the second paper the neighbourhood of /I=& is discussed. In this case the 
disturbance is concentrated near the axis of the vortex, and the main contribution 
to the eigenvalue w is found, when n % 1, by deforming the path of integration of 
the differential equation away from the real axis of r to go through a saddle-point 
in the complex r-plane. The neutral point is thus identified with q-2P = O(n-1) when 
this saddle-point lies on the imaginary r-axis. In  addition, the marginal stability of 
the flow is examined. This, in the limit n+ 00, occurs at q2 = 2 ,  and i t  is shown that 
if q2 < 2 the two neutral points occur at /3 = P1, P2, with 

each of the quantities stated differing by O(n-l) ,  while if q2 > 2 the corresponding 
result is 

1 
PI < 82 < q-l < - < b. 4 

It is also shown that, when n %- 1, the flow is stable if 

In the present paper we examine the neighbourhood of the neutral point /I = q-' 
for finite values of n. If q2 < 2 this is the upper neutral point for modes whose lower 
neutral point is, in the limit n+ CQ, /3 = !jq. If q2 > 2 this again must be an upper 
neutral point, since for instability p < q-l, though the corresponding lower neutral 
point cannot now be P = b. The results, which turned out to be rather unexpected, 
may partially explain the difficulties experienced by numerical analysts in computing 
modes that are nearly neutral. The modes are centre-modes, and they are found to 
exist, for given n, not for all q below some upper bound, but for discrete intervals 
of q. For example, if n = 1 such modes are found for 0.21 < q2 < Q in the range q2 < 2,  
and in the range q2 > 2 for 5.33 2 q2 2 3.15 and 2.64 2 q2 2 2.43, and also in 
decreasing intervals centred on q2 = 2(4m2- 1)/(4m2 -9) for integral m, this last 
result having been verified form from 4 to 20, but probably holding for all m. Similar 
results are found for n = 2,  3, though for n = 4 ,  q2 = 2 does not seem to a limit point 
for such modes. As n increases, the findings are not inconsistent with the results of 
Leibovich & Stewartson (1983), who predict stability for q2 > 2 as n+ 00, and of 
Stewartson & Capell (1985), who obtain a centre-mode, with which the present results 
might be expected t o  lead t o  a match, only in the limit q2+2-.  
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The plan of the paper is as follows. In $2 we set up the relevant equation for the 
radial component of the perturbation velocity and explain the strategy of the analysis 
for determining these centre-modes when 0 < 1 -Pq 4 1. In $83 and 4 we set up the 
equations that are valid respectively away from, and in the immediate neighbourhood 
of, the axis of the vortex and demonstrate how the match is to be made between them. 
This match determines the leading contribution to oi, the imaginary part of w.  The 
main results of the paper are contained in $ 5  in which the numerical work required 
to determine those values of q for which the modes exist is described and the 
conclusions are demonstrated graphically. In $6 we carry out a similar analysis for 
0 < /3 4 1, as it  seemed a possibility that /3 = 0 could be a candidate for the position 
of the lower neutral point. However, the conclusion from this investigation is that 
it is not, at least for centre-modes of the type considered here. 

2. The equation for the perturbed radial velocity and the strategy of the 
centre-modes 

Non-dimensional coordinates and velocity components are defined as follows for 
this inviscid incompressible vortex flow. We take cylindrical polar coordinates 
(r, 8, z) ,  with z along the axis of the vortex, and the basic flow to be steady and, for 
the trailing vortex to be considered here, to have corresponding velocity components 
(0, V ,  W), where J' and W are given by (1.1). In  the disturbed flow each velocity 
component and the pressure are assumed to be of the form (1.2). 

It has been shown by Howard & Gupta (1962) (see also Pedley 1968) that in the 
linearized equations of motion the pressure and axial and azimuthal velocity 
perturbations may be eliminated in favour of the radial perturbation u ei(njz-ne-wt) 
to give the following equation for y = ru(r) : 

where a(r), b(r)  and y ( r )  are as in (4.4) of Leibovich & Stewartson (1983) and their 
9 of equation (4.1) is related to y by &y = (1 +$r2):$. Thus 

b(r)  = 4/3q( 1 -/3q) ecrP( 1 - e-" 1 
1 +$r2 , 

(2.2a) 

(2.2b) 

and the boundary conditions to be satisfied by y in (2.1) are 

y(0) = 0, y(o0) = 0. (2.3) 

As discussed in $1, we shall assume that /3q > 0, as this has previously been found 
to lead to the most unstable modes, and henceforth, for clarity and convenience, will 
take P > 0, q > 0. 

The types of modes to be sought here are centre-modes, so called because the 
disturbance is concentrated mainly in the neighbourhood of the axis of the vortex. 
These modes will be almost neutral, and as such will, to leading order, possess critical 
layers through which, for this inviscid normal-mode approach, the solution must be 
continued analytically. As indicated by the numerical work of previous authors 
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discussed here in $ 1, and verified by asymptotic techniques by Stewartson & Capell 
(1985) for n % 1, the point pq = 1 is very probably neutral. We assume that 

o <  1-pq< 1, (2.4) 

and examine the possibility of the existence of centre-modes near /3 = q-' for values 
of n of order unity. 

The procedure for the discussion of the centre-modes is as follows. It closely 
resembles that employed by Stewartson & Brown (1984) in their study of the 
centre-modes in rotating Hagen-Poiseuille flow. We first choose o in (2 .2~)  so that, 
to leading order in the small parameter 1 -pq, y(0) = 0, and thus set 

(2.5) 
n 

w-n(p-q) = -(qz-2)r, 

where r is a small complex constant to be found; it will emerge that I r( = 0(1 -pa). 
Equation (2.1) is to be solved in two separate regions. When r = 0(1), i.e. away from 
the immediate neighbourhood of the axis of the vortex, we set pq = 1 and r = 0 in 
(2.1) and find, in $3, the solution of the resulting equation that decays at infinity. 
In this outer equation the term in b(r) /yz ,  the most singular term in (2.1), is absent 
because of the factor 1 -pq. Since, near r = 0, i t  follows from (2 .2~)  and (2.5) that 

2q 

n 
y ( r )  x --(qz-2)(r-rz), 

2q 

r must be retained when r2 = O( 1 rl ), and this defines the order of magnitude of the 
size of the inner region to be discussed in $4. On the assumption that I rl = O( 1 -Pq), 
the term b(r) /y2  leads to a contribution to the inner equation that is of comparable 
magnitude to those of the other terms. The solution of the inner equation must 
vanish a t  the origin and match with the outer solution in the appropriate limits. It 
is this matching that leads to the value of r. 

Since b(r) in (2 .2~)  has, in addition, a factor 8, a similar analysis may be carried 
through when p x 0 instead of B x q-l. This we undertake in $6 and find that there 
are no centre-modes in this neighbourhood for any values of n or q. Had such modes 
existed this would have given support for p = 0 as a candidate for the position of 
the lower neutral point at finite values of n. 

In  93 we establish the equation to be solved away from the immediate neighbourhood 
of r = 0 when (2.4) holds. 

3. The solution when r = 0(1) 

and r = 0 in (2. l), which becomes 
As outlined in $2, for the solution away from the axis of the vortex we set Pq = 1 

Of the two solutions of (3.1) we require the one that is exponentially small with 
exponent -nr/q as r+  a, and for the match with the inner solution of 94 the only 
property we shall require of the solution is the ratio A / B  when it was written as a 
sum of power series about the origin, i.e. 
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Here a, = b, = 1, and p(  > 0) is defined by 

the origin being a regular singular point if q2 +2.  
The determination of A / B  is a numerical undertaking. It emerges that for the 

validity of the ensuing analysis we must have p real, so that, from (3.3), for every 
n there are two possible ranges of qe, namely qe > 2 and 0 < qe < 2n2/(n2+8),  the 
former corresponding to lower Rossby numbers. The intervening values of qz do not 
admit modes of the structure studied here. For any given q2 with p2 > 0 we proceeded 
as follows. 

We first set 
re = x ,  y ( r )  = Y(x)  (3.4) 

in (3.1), so that it becomes 

and, for values of n and q2 in (3.3) such that p was not an integer, (3.5) was integrated 
by a Rung-Kutta routine inwards from some large value of x,  where Y was taken 
to be say, with Y' = -nY/(2qd)  there, as far as x = xo, where xo is some number 
less than the radius of convergence of the series solutions about x = 0 of (3.5). The 
radius of convergence of these solutions is either q2 or I Z, I, where Zl is the zero of 
{qe((z"- 1 +e-2) - Z ( l  -e-z)}/z" that is closest to the origin, whichever is the least. It 
is not difficult to show that I El I 2 2% when qe = 0, 1, 00 and that E,+O as q2+2. For 
the intermediate values of qe considered, the position of the zeros was examined 
numerically to ensure that the chosen xo was sufficiently small. Thus at x = zo we 
have the required solution together with its derivative. The next task was to evaluate 
the series solutions of ( 3 4 ,  namely 

and their derivatives, and to find A / B  in (3.2) by equating a combination of the two 
series so that Y(xo) and Y'(xo) agreed with the values found for the corresponding 
quantities yielded by the RungeKutta procedure. For each value of qe, A / B  was 
calculated using two different choices of xo as a check that xo was well inside the circle 
of convergence and that the equation was being integrated sufficiently accurately 
between these two points. To find a, and b ,  we wrote (3.5) in the form 

03 co m 
xeY" E amxm-l+xY'  Z B , X ~ - ~ - Y  E y m  xm--l= 0,  (3.7) 

m-1 m - 1  m - i  

( -  1)rn-l 
where a, = + f - q 2 ,  am = [!f-2q2(m+ 1)+m(m+ l)] ( m  2 2) ,  ( 3 . 8 ~ )  (m+ l ) !  

and y, = q46,, ye = $6,+2q26,, ym = ~ 6 , + 2 q 2 6 , ~ , + 6 , ~ ,  (m > 3), 

with 
(- l),-l pn-n2(m+ 1) + m ( m + i ) ]  (m > 1). 
(m+ l ) !  Q2 

6 ,  = 

(3.8b) 

( 3 . 8 ~ )  
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The coefficients a, and b ,  could then be determined successively from the triangular 
system Cv = 0 where C,,, the ijth element of the matrix C, is given by 

Ct, = ( c + j -  I )  ( c + j - 2 ) 0 l ~ - , + ~ +  ( c + j -  l )S i - ,+ l -y i - j+ l ,  (3-9)  

where c = !g~ if the vector u consists of the coefficients a, and c = -a if it consists 
of bj .  There was no difficulty in obtaining as many (say 120) of a, and b, as required. 

For the region 0 < q2 < 2n2/(n2 + 8 )  an identical procedure was adopted after the 
equation had been scaled by the transformation x = q22 so that the size of the 
corresponding coefficients Z,, p, and 7, could be kept under control when q2 was 
very small. 

When p in (3 .3)  is a positive integer, P say, bp+l in (3 .2)  is infinite, an indication 
that the series should contain a term in r p  logr. For our purpose it is sufficient to 
consider integral values of p as the limits p +  P and note that in such situations we 
shall have bp+l = b(p- P)-l ,  where b is finite. To cancel this singularity A / B  must 
have a simple pole as p +  P ,  with residue L, say, so that 

-=- A L~ a s p + P ,  
B p - P  

(3.10) 

where L, = -b, and this property of A / B  will be sufficient for our requirements. It 
is simple, for given q2 and n,  to calculate b the value of which is 

P 

(3.11) 

where the C,,, and hence b j ,  are calculated with c in (3 .9)  set equal to -+P. When 
P = 0 the corresponding result is that A / B + -  1 as p+O. 

Before presenting results for selected values of n, we discuss the solution that is 
appropriate in the immediate neighbourhood of r = 0 so that the relevance of the 
quantity A / B  becomes clear. 

4. The solution in the immediate neighbourhood of the axis of the vortex 
The procedure indicated in $2 suggests that we set 

s = r 2 / r  (4 .1)  

in (2.1),  regard I rl as 0(1 -Sq) and set /3q = 1 except in the multiplying factor of 
b(r) .  Thus, in the region where s = 0(1), (2 .1)  reduces t o  

where y(s) = y ( r ) ,  the solution of which that is regular at  s = 0 is 

if we choose 

8:" 

(1-S)P 
P(s) = ~ P(a, b,  n +  1, s) (4 .3)  

(4 .4)  

In (4 .3) ,  F is a hypergeometric function in the usual notation, with 

a = + ( n - p ) - p ,  b = + ( n + p ) - p ,  (4.5) 

where p is as in (3 .3) .  To determine p, and hence r, we must match this solution, 
as s + w ,  with the solution of $ 3  that takes the form (3 .2)  as r+O. Now as S+CO 
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it follows from (4.3) and the properties of the hypergeometric function that, on 
replacing s by r2/I' ,  

where Z1 and C2 are power series in T/r2 whose leading terms are both unity, 
1 arg ( -r2/l-') I < x ,  and 

Now the leading terms of (3.2) give 

y ( r )  x ArP+Br-@, (4.8) 

of which the powers of r are seen to match automatically with those in (4.6). To match 
the coefficients, we require 

and since p > 0 and I rl 4 1 we deduce that to leading order co = 0. From (4.7) this 
implies that f(n + p )  -p  is a negative integer or zero, i.e. 

p = + ( n + p ) + M  (= po say) ( M  2 0) (4.10) 

for integral M, and F reduces to a polynomial in s of degree M. To be able to calculate 
the leading-order contribution to wi, the imaginary part of w ,  we must, however, 
retain the next approximation to p. On setting p = po+Ap in (4.7), where I Ap 1 4 1, 
we obtain 

n! (p + M )  ! 
p ! (n + M )  ! 

(4.1 1) 
n!M!(p-l)!  
(p + n + M )  ! 

c = (- 1)M+' Ap, d o =  0 

and then the matching condition (4.9) gives 

-P ( p + n + M ) ! ( p + M ) !  
p!(p-l)!M!(n+M)!' 

(4.12) 

However, it is the calculation of r, and hence of w ,  that is the purpose of this study. 
To leading order r is real (= ro say) and is obtained from (4.4) with p set equal to 
p,. To order I Ap 1, (4.4) becomes 

(4.13) 

and this, together with (4.12), enables wi to be found on proper interpretation of the 
factor ( - f - l ) - P .  

Suppose first that pq > 1.  Then r in (4.4) is negative, as is s defined by (4.1). In 
this case there is no difficulty in extending (4.3) through s = 1,  or equivalently in 
evaluating (-T-l)-P in (4.12) as [4(pq- 1) q2/(q2-2)2p0(p0+ 1)3P. Thus the contri- 
bution to I', and hence to w ,  that we have calculated through (4.12) and (4.13) is purely 
real, and if p > 1 will be of higher order than that due to the terms of (2.1) that we 
have ignored. In this situation it seems that the solution of (2.1) may be extended 
to all powers of pq- 1, and at no stage will complex quantities be generated. The 
modes will be neutral without a critical layer, and may extend to large values of pq. 
However, when r > 0, p(s) in (4.3) has a branch point at s = 1 ,  or equivalently at 
r2 = f .  The continuation of the solution through r2 = r is made by assuming that 
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r has a small positive imaginary part. This will, by (2.5), also give o/(q2-2) a small 
positive imaginary part, and the consistency of the assumption must be verified a 
posteriori. Since, from (4.6), we have for r2 real and positive that I arg ( -F1) < x I, 
and -F1 will, like r, have a small positive imaginary part, it follows that we may 
write 

( - r - l ) - P  = IrolPe-iPX (4.14) 

in (4.12). Thus altogether, from (2.5), (4.12) and (4.13), 

2(1 -m qn 1 +- A @ + n + M ) ! @ + M ) !  
w-n(B-p )  x 

(q2-2)p0(p0+1) { B p !  ( p - l ) ! M ! ( n + M ) !  

The consistency condition is that 

(4.16) 
A - sinpx < 0, 
B 

where A / B  is calculated as described in $3. For those values of q2 and n for which 
(4.16) is satisfied, we deduce that (2.1) possesses unstable centre-modes of the kind 
we have described when /?q x 1. When (4.16) is not satisfied we conclude that there 
are no centre-modes in this neighbourhood. In $5 we examine the consistency 
condition for various values of n. 

5. Specific results for various values of n 
It was shown in $4 that a necessary condition for the existence of centre-modes 

of the type under discussion here is that (4.16) should hold. Here p is given in terms 
of q and n by (3.3), and A / B  in (3.2) must be obtained from the solution of (3.5) that 
is exponentially small as x+oo. This is a simple numerical task, and was, for 
non-integral values of p, undertaken as described after (3.5). When p is an integer 
( P  say), ( A / B )  sinpx may be determined as ( -  l ) p n L p ,  where L, is defined in (3.10). 

For each n there are two ranges of q2 to consider, namely q2 > 2 and 
0 < q2 < 2n2/(n2+8). As n = 1 is likely to correspond to larger values of q2 for which 
the flow is unstable, we consider it first. For the low integral values of p it  is possible 
to calculate the corresponding (A/B) sinpx by hand, and specific results are that 
when P = 0, 1 ,  3 ( P  = 2 is not applicable with n = 1 ) :  

A 
- sinpn x -sinpx as p+O (q2= i), 
B 

A 1 
- sinpx x - as p +  1 (q2 < l ) ,  
B 4q2 

(5.1 a )  

(5.1 b )  

(5.1 c) 
A 
-sinpx x & asp+3 (q2 9 1) .  
B 

We thus see immediately that there are no centre-modes for q2 very small or very 
large, but that there are for q2 = (%)-. It was also verified that L, < 0 for 4 < P < 40, 
from which it  may be concluded that, at  least for these values of P and probably 
for larger values as well, ( A / B )  sinpx is negative when p lies close to an even integer, 
but is positive when p lies close to an odd integer. Now as q2+2+ the values of q2 
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for whichp is an integer have 2 as a limit point, and we thus have decreasing intervals 
in which the centre-modes exist. Also, as P+ co , L, becomes exponentially large, and 
indeed the asymptotic form 

(5.2) log I Lp I X 2 P  10gP-Z' log 192+O(1) 

may be obtained by solving the equation 

Y = O ,  
dz2 z dz (42' (q2-2) ( z2+z3)  

d2Y 1 d Y  1 -+--- -+ (5.3) 

which is obtained from (3.5) on setting x = (q2-2) x and letting q 2 4 2  except in the 
last term. This equation yields a two-term recurrence relation, which may be solved 
exactly for the coefficients corresponding to bj of (3.6) and the singularity in bp+l 
analysed. Unfortunately this approximation did not yield the sign of L,. 

For the values of n and q2 for which the result was specifically tested it so happened 
that A / B  as a function of q2 vanished at most once between values of q2 that 
correspond to consecutive integral values of p. Thus ( A / B )  sinpx, which is easy to 
compute at integral values of p, remained one signed for P < p < P +  1 if it had the 
same sign for both p = P and p = P+ 1, and vanished once otherwise. This result, 
which has not been proved to be general, simplified the computation of the values 
of ( A / B )  sinpx, and for n = 1 these are illustrated in figure 1. Centre-modes exist for 
( A / B )  sinpx < 0 only, and it is seen that there are none for q2 > 5.33, but they exist 
for 5.33 2 q2 3 3.15 and for 2.64 2 q2 2 2.43. Also, though it is not possible to show 
them in this figure, there are those in small neighbourhoods of q2 = 2 (4m2- 1)/ 
(4m2 - 9) (m = 4, . . . ,20), which correspond to even integral p. There are none in small 
neighbourhoods of odd integral p. To illustrate these, oscillations of increasing 
amplitude would have to be drawn to the left of q2 = 2.4. To the right of q2 = 5.33, 
(A/B) sinpx increases monotonically to &, as given in (5.1 c). In the region 0 < q2 < 3 
it is found that (A/B) sin p37c is negative for 0.21 < q2 < 3 but is positive otherwise. 
The values p = 0, 1, 3,4,  5 ,6 ,  7 correspond to q2 = 0.222, 0, co, 4.286, 3, 2.593, 2.4 
respectivelyandq2+2+ asp+oo. Wealsonote, from (4.15) and (5.2), theincreasingly 
large oscillations in wi as p goes through integral values and q2 + 2'. 

The results for n = 2 are similar to those for n = 1. There are no centre-modes for 
q2 > 4.46, but they exist for 4.46 3 q2 2 2.94 and 2.54 2 q2 2 2.38, in which intervals 
(A/B)sinpn is negative. They also exist in small neighbourhoods of 
q2 = 2[(2m+l)2-4]/[(2m+l)2-12] (m = 4, ..., 20), as has been explicitly checked 
by evaluating L,. In  the lower interval of q2, namely 0 < q2 < g, centre-modes are 
found to exist for 0.58 < q2 < f .  In  this case p takes the integral values 0, 1, 2 in the 
lower interval and those greater than or equal to 4 in the higher. 

The results for n = 3 are again similar to those for n = 1. The maximum value of 
q2 for which centre-modes exist is q2 = 3.95. They exist in intervals 3.95 2 q2 2 2.79 
and 2.46 2 q2 2 2.33 and also in the neighbourhoods of q2 = 2(4m2-9)/(4m2- 17), 
this result having been specifically verified for m = 6, . . ., 20. In the lower range of 
q2, which now contains the integral values 0; 1, 2, 3 of p, the interval of existence 
is 0.92 < q2 < g. 

For n = 4 the intervals of existence in the neighbourhoods of certain integral p do 
not seem to occur for values of p greater than 8. This has been checked by evaluating 
L, for P from 8 to 40, and it was found that L, has sign ( -  l)p, so that (A/B) sinpx 
is positive. It could be that A / B  has two zeros between such values of q2, but this 
seems unlikely in view of our previous experience that A / B  had at most one zero 
between integral values of p. Thus for q2 > 2 there were only two intervals in which 
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FIGURE. 1. ( A / B )  sinpx for n = 1 and q2 > 2. 

centre-modes were found, namely 3.55 2 q2 2 2.66 and 2.40 2 q2 2 2.29. In the lower 
interval they exist for 1.21 < q2 < $. 

The disappearance of these intervals of existence in the neighbourhood of q2 = 2 
as n increased from 3 to 4 was examined. A t  n = 3.99 there were at least 20 intervals 
in which ( A / B )  sinpn was negative, but, by n = 4, of these 20 only the two corre- 
sponding to the largest values of q2 remained. The results are illustrated in figure 2. 
A solid line indicates a region of existence, the length of which was specifically 
calculated by evaluating ( A / B )  sinpn for non-integral p by integration of (3.5). The 
crosses indicate the approximate position of an integral value ofp in the neighbourhood 
of which ( A / B )  sinpx < 0.  Between each cross there is a neighbourhood in which the 
centre-modes do not exist. For n = 1 , 2 , 3  it is suspected that the crosses to the right 
of q2 = 2 should be infinite in number. By the time n reached the value 5 the main 
interval extended from 3.21 2 q2 2 2.55, but it proved impossible to compute the 
length of the second interval to the right of q2 = 2, probably because of the, by now, 
very small radius of convergence of the series in (3.2) to which the RungeKutta 
solution had to be matched. A t  n = 6 the main interval has 2.84 2 q2 2 2.44, and 
there are three to the right and two to the left of q2 = 2. At n = 7 the main interval 
has 2.50 2 q2 2 2.36, and there are three to the left and two to the right of q2 = 2. 
From now on the intervals to the left of q2 = 2 increase in number and those to the 
right disappear. At n = 8 there is one to the right and three to the left; at n = 9 there 
are none to the right and four to the left. For n = 20 there are ten to the left of q2 = 2, 
extending from 1.81 < q2 < 1.96, and for n = 30 there are fifteen, extending from 
1.87 < q2 < 1.98. Presumably as n+ 00 the number will become infinite and centred 
on q2 = 2-. 

Before discussing, in $7,  the implications of these results, we show that there is no 
such similar behaviour in the neighbourhood of /3 = 0, and indeed there are no 
centre-modes there. 
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FIGURE 2. Illustration of the regions of existence and non-existence of centre-modes as q2 varies 
for various values of n. The solid lines indicate regions of existence, the lengths of which have been 
evaluated explicitly ; the intervals of existence whose lengths were not calculated are represented 
by a cross that marks one point of the interval. 

6. The non-existence of centre-modes in the neighbourhood of /? = 0 

possible, and we outline it briefly here. In  this situation (2.5) and (2.6) become 
When 1/31 4 1 a discussion analogous to that of §§2-5 for the case 11 -pqI 4 1 is 

w = -nq(l-+o, y ( r )  x - h ( r - r 2 )  (6.1) 
respectively, where Tis  a small constant to be found, the order of magnitude of which 
will have I rl = 0(/3). Instead of (3.1) for the region r = 0(1), we now obtain 

4r4 ecr2 
dr r2-1+e-rP 

on setting p =  0 = Tin (2.1). The outer solution is thus, to leading order, independent 
of q, and is again of the form (3.2), but this time with p = p,, where 

p i  = n2 + 8. (6-3) 
As before, i t  is the ratio A,/B, for the solution of (6.2) that decays as r - t  00 that is 
required for the matching procedure. 

For the inner region where r = 0 I rl the equation corresponding to (4.2) is, with 
r2 = rs and s = 0(1), 

with solution 
d” 

(l-S)/” 
P(s) = ___ F(a, b,  n + l ,  s). 
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n AOIBO Pi 
2 -0.4011 12 
3 +0.2812 17 
4 +0.0069 24 
5 -0.00035 33 

TABLE 1. The values of Ao/Bo for 2 < n d 5 

Here now P(P + 1) = 4P/Q (6.6) 

and a and b are again given by (4.5), but with p = p, as in (6.3). The matching is 
as before, and the requirement for consistency is also (4.16), i.e. 

A, sinpox < 0. 
BO 

Since neither A,/B, nor p, depend on q, the condition (6.7) may be checked by varying 
n alone. It is easy t o  show that i t  is not satisfied when n = 1 (po = 3). For p, x 3 
i t  may be shown from (6.2) that  

is following as in $3 that A,/B,  has a simple pole a t  each integral value of p,. Thus 
as p,+3 

2x 5 sinpox+- > 0. 
BO 45 

For higher values of n the solution of (6.2) and evaluation of A,/Bo must be 
numerical as outlined in $3. For n = 2, . . . , 5 these are listed in table 1, from which 
it can be seen that (6.7) is not satisfied for such values of n. 

One might expect inconsistency for higher values of n also. As an indication of 
accuracy, we report the value A,/B, = - 133.11 obtained when n = 1.001, a result 
that  is in good agreement with (6.8) since p , - 3  x $(n- 1) when n x 1. 

The conclusion to be drawn from this section is negative in the sense that the 
discussion shows that /? = 0 is not the lower neutral point, a t  least for centre-modes 
of the type considered here. Indeed the published numerical work gives little 
indication that it is, though S. Leibovich (private communication) reports a tendency 
for wi to  remain non-zero near /3 = &, the stronger candidate for the lower neutral 
point when q2 < 2. It therefore seemed worthwhile to  investigate the status of /3 = 0 
in terms of the analysis considered here, and the conclusion is that there are no 
centre-modes in this neighbourhood, at least for 1 < n < 5 .  

7. Discussion 
The rather bizarre results of the preceding paragraphs may offer a partial 

explanation of the difficulties experienced by numerical analysts in computing the 
neutral or near-neutral modes for the vortical flow given by (1.1). It has been shown 
that centre-modes exist in the neighbourhood of /3 = q-' in distinct and discrete 
intervals of q2 that  also depend strongly on the value of the azimuthal wavenumber 
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n. For all these unstable modes the growth rate is very small. Since (4.15) shows that 
the growth rate is also proportional to n, the extension of figure 2 to n = 0, which 
gives a result similar to the case n = 1, is not in contradiction with the fact that the 
flow is known (see Stewartson & Leibovich 1985) to be stable to axisymmetric 
disturbances for q2 > 0.16. 

The interpretation of the fact that there are intervals of q2 for which the present 
centre-modes do not exist is most likely not that the flow is stable for such values 
of q2 but that, in these cases, either the modes are of a type different from the 
centre-modes discussed here, or that /3= q-l is not for them a neutral point. 
Stewartson & Leibovich (1985), in their investigation of marginal separation at large 
values of n, mentioned here in $1, show that if q2 > 2 the neutral point is not identi- 
cally q-l. As n increases, the conclusions of the present study are not inconsistent with 
those of Leibovich & Stewartson (1983) and Stewartson & Capell (1985), who predict 
stability for q2 > 2 in the limit n+ m. In  addition, for larger values of n we seem 
to be obtaining centre-modes in the limit q2 + 2- only ; the ring-modes of Stewartson 
& Capell also become centre-modes in this limit. 

A point of note is that we have obtained instabilities at greater values of q2 ( x 5.33) 
than have hitherto been reported. Lessen et al. (1974) report q2 x 2.25, though they 
do state that instability at higher values of the swirl parameter was found by 
Bergman (1969) for a swirling flow with somewhat similar velocity profiles. 

This research, the major part of which was completed before the death of Keith 
Stewartson in May 1983, was supported by the Fluid Mechanics Programme of the 
National Science Foundation under Grant, MEA83067 13. Both authors benefited 
greatly from the hospitality of, and stimulating discussions with, Professor S. Leibo- 
vich at Cornell University. 
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